Mixing C and assembly language programs
Copyright © 2007 William Barnekow <barnekow@msdexe
All Rights Reserved

It is sometimes advantageous to call subroutinésanrin assembly language from
programs written in C. The reverse is also truas paper outlines the procedure for
doing this with AVR Studio. AVR Studio has two asg#ers, the built-in assembler that
comes with AVR Studio and the assembler that comtisthe GCC plug-in. When a
new project is created with AVR Studio, you areegi\a choice as to the type of project
to create. The choices are an Atmel AVR assemfajept or an AVR GCC project.

Hle Project Buid Edit View Tool Debug Window Help
D@ i 2ERE 2 TR M ABAIBE=ivaEH I P PR VNEN GG I BEEESRE

B0 LT pmoom e e N

Name
~ Create new project
Praject type: Project name
[@ Atmel AVR Assembler I
EAVR GCC
[& Greate jritisl file [@ ‘Creste folder
Initial file
l s
Location:
DiyAdmel\ProjectsiLecture examples |
FElyo view |
Loaded plugi| v/ 472498
<< Back I [> l Cancel Help
i _ : |)
a®puid @ Message | S rind n Fles | Bl Breakpoints and Tracepoints |
L CAP NUM SCRL

_;"E start acgwy v . AL e i L [=) L X b) 2336 PM

In order to mix C and assembly language, you muestte an AVR GCC project. The
program you create may be a C program (.c extejysac@++ program (.cpp extension)
or an assembly language program (.S extension) nWieating an assembly language
program, you must be aware of the differences bmtveeGCC assembly program and an
Atmel AVR assembly language program.

Comparison of GCC assembler vs Atmel AVR assembler

This section illustrates the differences betweenGICC assembler and the Atmel AVR
assembler. The GCC assembler uses the same pregopes the GCC C/C++ compiler.
Therefore note the use of #include instead ofuihe! Another difference is in the data
segment definition. The GCC assembler allows th&lization of data in its data
segment. The data is actually stored in the progreamory. The assembler generates
start up code that copies initialized data into$fRAM. The Atmel AVR assembler does
not allow initialized data in the data segmenttdad, initialized data must be placed in
the code segment (usually at the end of the progréne programmer must then supply
the code to copy initialized data into SRAM. Ndte use of the LPM instruction and the
Z-pointer in the Atmel AVR program. Other differesc

GCC Atmel AVR
hi8 high

o8 low

.asciz “hello” .db “hello”, O
.section .data .dseg
.section .text .cseg
<avr/io.h> “m32def.inc”

The next page shows an example of code writtethieGCC assembler and repeated for
the Atmel AVR assembler.

GCC assembly lanquage
#include <avr/io.h>

/* The following is needed to
subtract 0x20 from 1/O addresses
*/
#define _ SFR_OFFSET 0
.section .data
.org 0x0
message:

.asciz "hello"

.section .text
.global main

main:
Idi r16, Oxff
out DDRB, r16
Idi r16, hi8(RAMEND-0x20)
out SPH, r16
Idi r16, I08(RAMEND-0x20)
out SPL, r16
sei
rcall lcd_init
Idi XH, hi8(message)
Idi XL, lo8(message)

rcall prtmsg

quit;
rjmp quit

prtmsg:

Id r24, X+

cpir24,0

breq done

rcall lcd_print_char

rjmp prtmsg
done:

ret
.end

Atmel AVR assembly lanquage
.include “m32def.inc”

.cseg

.org 0
rjmp main

.org Ox2A

main:
Idi r16, Oxff
out DDRB, r16
Idi r16, high(RAMEND-0x20)
out SPH, r16
Idi r16, low(RAMEND-0x20)
out SPL, r16
sei
rcall led_init
Idi ZH, high(message)
Idi ZL, low(message)
rcall prtmsg

quit;

rjmp quit

prtmsg:
Ipm r24, Z+
cpir24,0
breq done
rcall lcd_print_char
rjmp prtmsg

done:
ret

message:
.db “hello”, 0

Mixing C and Assembly

To allow a program written in C to call a subroetiaritten in assembly language, you
must be familiar with the register usage conventibthe C compiler. The following
summarizes the register usage convention of the S compiler.

Register Usage

rO This can be used as a temporary register. If ysigasd a value to this
register and are calling code generated by the dempou’ll need to save
r0, since the compiler may use it. Interrupt roesigenerated with the
compiler save and restore this register.

rl The compiler assumes that this register contaires Heyou use this register
in your assembly code, be sure to clear it befet@ning to compiler generated
code (use "cIr r1”). Interrupt routines generatathwhe compiler

save and restore this register, too.

r2—rl7, r28, r29 These registers are used by the compiler for stoddgour assembly
code is called by compiler generated code, you t@edve and restore any

of these registers that you use. (r29:r28 is thiedéx register and is used

for pointing to the function’s stack frame, if nesary.)

r18-r27, r30, r31These registers are up for grabs. If you use arlyese
registers you need to save its contents if youasallcompiler generated code.

Function call conventions

Fixed Argument Lists

Function arguments are allocated left to right.yTaee assigned

from r25 to r8, respectively. All arguments takeawrpeven number of registers (so
that the compiler can take advantage ofrttew instruction on enhanced cores.)
If more parameters are passed than will fit inrdggsters, the rest are passed on
the stack. This should be avoided since the cddesta performance hit when
using variables residing on the stack.

Variable Argument Lists

Parameters passed to functions that have a vaaadplenent list

(printf, scanf, etc.) are all passed on the stelclr parameters are extendedrits.

The parameters are pushed to the stack in rigkfttorder. The variable, x, is a uint8_t
and notice that it is extended to a 16-bit valuthwhe upper 8-bits set to zero (eor r25,
r25).

lcd_printf(++x, X);
fa8: 89 81 Idd r24, Y+1 ; Thisis X
faa: 99 27 eor r25, r25 ; 0-extended to 16-bits

fac: 9f 93 push r25 ; and pushed to the stack

fae: 8f 93 push r24

fb0: 89 81 ldd r24, Y+1 ;

fb2: 8f 5f subi r24, OxFF ; This forms ++x

fb4: 89 83 std Y+1, r24

fb6: 99 27 eor r25,r25 ; O-extended to 16-bits
fb8: 9f 93 push r25 : and pushed to the stack
fba: 8f 93 push r24

fbc: Oe 94 03 06 call Oxc06

fc0: 0f 90 pop rO

fc2: 0f 90 pop r0

fc4: 0f 90 pop rO

fc6: 0f 90 pop r0

In this example, the function has two argumentsdh@ passed in left to right order.
Here is the function prototype:

void lcd_goto_xy(uint8_t x,uint8 _ty);

The parameter, X, is passed via r24 and the paeanyets passed in r22. Each
parameter is passed as 2-bytes. Therefore, xualfcpassed in r25:r24. Since r25 is
not explicitly cleared it is ambiguous as to th&ueaactually passed. The function
apparently ignores the value in r25.

lcd_goto_xy(0, 1);

fc8: 61 e0 Idir22,0x01 ;1
fca: 80 e0 Idi r24, 0x00 ;0
fcc: 0e 94 ab 01 call 0x356

Return Values

8-bit values are returned in r24. 16-bit valuesratarned in r25:r24.

32-bit values are returned in r25:r24:r23:r22. @4+blues are returned in r25:-
r24:r23:r22:r21:r20:r19:r18.

Examples

The following examples illustrate the calling contien and register usage of the GCC
compiler. In this example, an assembly languaggrara calls functions written in C.
Below the function prototypes are listed.

; initilaize LCD

void lcd_init(void);

;set cursor position

void lcd_goto_xy(uint8_t x,uint8_ty);
; print character

void lcd_print_char(uint8_t symbol);
;print string at current position

void lcd_print_string¢har*string);
;print hex number on LCD

void lcd_print_hex(uint8_t hex);
;print int8 on LCD

void lcd_print_int8(int8_t no);

#include <avr/io.h>
.section .data

message:
.asciz "aloha"
.section .text
.global main
main:
Idi r16, l08(RAMEND) ;Initialize Stack Pointer
out SPL, r16 ;RAMEND is defined in iom32.h
Idi r16, hi8(RAMEND) ;RAMEND = 0x083f for Atmon aupatibility
out SPH, r16
sei ;Needed for Atmon compatibility
rcall lcd_init
clr r25
Idi r24, 255 ;8-bit param passed via r24
rcall lcd_print_int8
Idir24,""
rcall lcd_print_char
Idi r24, 255
rcall lcd_print_hex
Idir24,""
rcall lcd_print_char
Idi r24, 255
rcall lcd_print_uint8
Idi r24, 0 ;First 8-bit param passed via r24
Idir22, 1 ;Second 8-bit param passed via r22
rcall lcd_goto_xy ;Cursor at position 0 of line 1
Idi r25, hi8(message)
Idi r24, lo8(message) ;16-bit pointer passed2ar24
rcall lcd_print_string
done:
rjmp done
.end

If calling a function written in assembly languégem a program written in C, the
calling convention must be followed as describeovabHere are some guidelines to
follow when writing assembly functions that candadled from C.

-If you use registers r2-r17, r28, r29 you musseree them by pushing
them to the stack and pop them before you retune.d compiler expects
these registers to be preserved across functi¢s cal

- Parameters are passed to your function via exgis25-r8 as discussed
earlier.

- Results are returned via r25-r18 as discussdidrear

- The C compiler expects register rl to containviidae 0. If you use it in
your function, be sure to clear it before you retur

- If you are going to call a C function from withjour assembly function
and if you are using r18-r27, r30, r31 in your fiioe, you should push
these before you call the C function. The C comprkats these as
registers that it may clobber. Therefore their eatd are not guaranteed to
be the same as before the call.

The following is an example of a program writterGrthat calls a function written in
assembly language.

The C program

T T o

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Program to demonstrate how an assembly langusgton can be called from C
To make it compatible with ATMON, the followirtas to be done:

Project/Configuration Options
Custom Options
On command line type -minit-stack=0x83f
Click Add

This causes the compiler to initialize the StRcknter to RAMEND-0x20.
This will prevent the application from corrupgithe stack used by ATMON.
The start up code inserted by the compiler siitializes the Stack Pointer
to Ox85f however. The following code causeslihieer to add code to
re-initialize the Stack Pointer to 0x83f:

void my _init_stack (void) __ attribute__ ((naked))attribute __ ((section (".init2")));
void my_init_stack (void) {

SPH = 0x08:;
SPL = 0x3F;

/! See the avrlibc documentation for details.
M| |

#include <avr/io.h> /I needed for 10 port dedlianas
#include <inttypes.h> /I needed for type declarst
#include <stdlib.h>

#include <MSOE/delay.h>

#include <avr/interrupt.h>

extern uint8_t asmfunction(uint8_t); // Assembl@ndtion is external
uint8_t cfunction(uint8_t); /I C function prototyp

/I Global variable accessible by assembler codeCandde
uint8_t value;

void my_init_stack (void) __ attribute__ ((naked))attribute__ ((section (".init2")));
void my_init_stack (void) {

SPH = 0x08;
SPL = Ox3F;
}
int main(void)
{
sei();
DDRB = 0xff; // PB3 is output
DDRD = 0xff; /I PD7 is output
DDRA = 0xc0; I/l Motor direction bits are outputs
PORTA = 0xc0;
PORTB = 0;
PORTD = 0;
value= 0x03;
while(1)
{
value = asmfunction(value); // Turns motors ON
delay_ms(1000); /I Wait a second
value = cfunction(value); /l Turns motors OFF
delay_ms(1000); /I Wait a second
}
return O; I/l Never gets here

uint8_t cfunction(uint8_t a)

{
if (a==14)
{
PORTB = PORTB & ~(1<<3); // Turn motors OFF
PORTD = PORTD & ~(1<<7);
a=3;
}
return a;
}

#include <MSOE/delay.c>
The assembly language function

/I The following two lines must be included in ey@ssembly language

/l function. They are needed to allow the use efgbrt names and IN and OUT
/Il instructions

#define _SFR_ASM_COMPAT 1

#define _ SFR_OFFSET 0

#include <avr/io.h>

.global asmfunction ; The assembly function mesteclared as global

asmfunction:
cpi r24, 0x03 ; Parameter passed by caller in r24
brne ahead
sbi PORTD, 7 ; Turn motors ON
sbi PORTB, 3

ahead:
Idi r24, 0x04; ; Return value to caller in r24
ret

The assembly function is in a separate file thastnhe added to the main project which
is the C program. Do this by right clicking on SoeiFiles and adding it to the project.
You will then see both files listed as shown below.

AVR Studio - D:\Atmel\Projects\Lecture examples\mixed\asmfunction.S
Hle Project Buid Edit View Tool Debug Window Help

DEE@Y tB2RES o -« B0y 4 67840 =E
TraceDiabled = WX £ L T 1M MR My

|avR Gec
= i = . - - - = = S
"'?mﬂm(d%ut} value = cfunction(value); /7 Turns motors OFF
=3 source Flles delay_ms (1000} ; #7 Wailt a second
- 8 asmfunction.s
m'lxed.c return 0 Z# Never gets here
-4 Header Files =
% £ External Dependendies Bl D:\Atmel\Projects\Lecture examples\mixed\asmfunction.s
=43 Other Files ['
<7 The following two lines must be included in every assembly language
<7 funection. They are needed to allow the use of the port names and IN and OUT
< instructions
#define _SFR_ASM COMPAT 1
#define _ SFR _OFF3ET O
#include <avr<ic.h>
.global asmfunction ; The assembly function must he declared as glaohkal
asmfunction:
cpi r24, 0x03 : Parameter passed by caller in r24
brne ahead |
shi PORTD, 7 3 Turn motors O
shi PORTE, 3
.l . |
S AR .| yav..| @ mfo D:\atmel\Projects\Lecture examples\mixed\mixed.c B D:\Atmel\Projects\Lecture exam, \mixed\asmfunction.S 4 »
] p]
|Buid X,

23 Byid | @ Message | S Find in Fles | Kl Breakpoints and Tracepoints |

V1 start ac By

To build the project just click the Build menu acttbose Build.

AVR Studio - D:\Atmel\Projects\Lecture examples\mixed\asmfunction.S

Hle Project | Buid | Edit Miew Tool Debug Window Help
- T A P : & o» ™ TP W
Trace © . Rebuid Al B e e S :
; #» Buid and Run Ctrl+F7
|AVR GCC ; = 5 =
AR B Compie LS YAl nel\Projects\Lecture examples\mixed\mixed.c
i gmﬁm(de * Clean F12 value = cfunction(value); /7 Turns motors OFF
=423 Sourc Export Makefie delay_ms(1000); A4 Wailt a second
(5] asmrOnctions -
mixed.c return 0; Z# Never gets here
-{23 Header Files
% £ External Dependendies tmel\Projects\Lecture examples\mixed\asmfunction.S
=43 Other Files
<7 The following two lines must be included in every assembly language
<7 funection. They are needed to allow the use of the port names and IN and OUT
< instructions
#define _ZFR_ASM COMPAT 1
#define _ SFR OFF3ET 0
#include <avr<ic.h>
.global asmfunction ; The assembly function must he declared as glaohkal
asmfunction:
cpi r24, 0x03 : Parameter passed by caller in r24
brne ahead |
shi PORTD, 7 3 Turn motors O
shi PORTE. 3
<) I

S AR ... ;',Fih,."o V\ i S | D:\atmel\ProjectsiLecture examples\mixed\mixed.c B D:\Atmel\Projects\Lecture examples\mixed\asmfunction.S 4 »

|Buid E

23 Byid | @ Message | S Find in Fles | Kl Breakpoints and Tracepoints |

As mentioned earlier, another thing that must beedor Atmon compatibility is to
choose the correct Project Configuration Optiondl@strated below:

.. AVR Studio - D:\Atmel\Projects\Lecture examples\mixed\asmfunction.S

Hle Project Buid Edit View Tool Debug Window Help
- o

D@ tBRg o o

race Disabled S mixed Project Options

|AVR GcC
=43 mixed (defautt)
=423 Source Files
- 8 asmfunction.s
- [E) mixed.c
-4 Header Files
=43 External Dependencie}

— Custom Compilation Options

General

Include
1#-43 Other Files Directories

Wall

mixed.c -gdwarf-2

asmfunction.S -00

[Linker Options] -funsigned-char
-funsigned-bitfields
-fpack-struct
-fshort-enums

-minit-stack=0x53f

— External Tools

[¥ Use WinAVR

avr-gee ID’.\AtmeﬂWkMVR\brn\avr—gcc.em

make: !D SAtme\WinAVR\utils\bin\make.exe

and OUT

function.S 4 »

8| ILL

X

The important option is —minit-stack=0x83f. Thiswseded to insure that 0x20 locations
are reserved for the bootloader (Atmon). Enter ltheson the command line and click
the Add button. Do this BEFORE building the project

